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Families of graphs with W,({G},q) functions that are nonanalytic at 14=0
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DenotingP(G,q) as the chromatic polynomial for coloring amvertex graphG with q colors, and con-
sidering the limiting functionW({G},q)=lim,_..P(G,q)*", a fundamental question in graph theory is the
following: is W,({G},q)=q *W({G},q) analytic or not at the origin of the d/plane (where the complex
generalization ofq is assume® This question is also relevant in statistical mechanics because
W({G},q) =exp& /ks), whereS; is the ground state entropy of tigestate Potts antiferromagnet on the lattice
graph{G}, and the analyticity ofW,({G},q) at 1f=0 is necessary for the largp-series expansions of
W, ({G},q). AlthoughW, is analytic at 1d=0 for many{G}, there are somgG} for which it is not; for these,

W, has no largeg series expansion. It is important to understand the reason for this nonanalyticity. Here we
give a general condition that determines whether or not a partitM}éfG},q) is analytic at 14=0 and
explains the nonanalyticity where it occurs. We also construct infinite families of graphSWvitlmctions that

are nonanalytic at f=0 and investigate the properties of these functions. Our results are consistent with the
conjecture that a sufficient condition fov,({G},q) to be analytic at =0 is that{G} is a regular lattice
graphA. (This is known not to be a necessary conditjdi$1063-651X97)04110-X]

PACS numbsgs): 05.20-y, 64.60.Cn, 75.10.Hk

I. INTRODUCTION and statistical mechanics because a standard method for
studying this function or equivalent reduc®d functions is
The chromatic polynomiaP(G,q) of an n-vertex graph to calculate a largeTaylor series expansion about the point

G and the asymptotic limiting function 1/g=0 [10-13. However, if W,({G},q) is nonanalytic at
_ " 1/g=0, then one cannot carry out such a Taylor series ex-
W({G},q)=lim P(G,q) (1) pansion in the usual manner. Indeed, we recently discussed

n—oo

an example, namely, the bipyramid graglh, for which

W, ({B}.q) is not analytic at If=0 [13] (see alsd14]).
Clearly it is important to understand better the differences

between the families of graphs that yield,({G},q) func-

play important roles in both graph thedry—6] and statisti-
cal mechanic$7-9]. HereP(G,q) is defined as the number
of ways of coloring the graple with q colors such that no , )
two adjacent vertices have the same color, §8} denotes  tions analytic at I{=0 and those which produd#, ({G},q)
the limit asn— of the family ofn-vertex graphs of typ6&. functions that are nqnanalytlc atgE 0. In thg present paper
The connection with statistical mechanics is via the elemenWe shall address this problem. We shall give a general con-
tary equality P(G,q)=2(G,q,T=0)ppr, where dition that determines whether or not a particW4i({G}.q)
Z(G,q,T=0)psr is the partition function of the zero- is analytic at 14=0. This explains the source of the nonana-
temperaturey-state Potts antiferromagnéF) [8,9] on the  Iyticity in the cases where it occurs. We also construct infi-
graph G, and the consequent equalifiyn the n—oe limit) nite families of graphs withV, functions that are nonanalytic
W({G},q) = exd S({G},q)/ks], whereSy({G},q) denotes the at 14=0. These serve as a very useful theoretical labora-
ground state entropy of thg-state Potts AF oG} (typi- tory, and we study the properties of the resultéht func-
cally a regular lattice} G} = A with some specified boundary tions in some detail. A salient point is that none of {le&}
conditions. Given the fact thatP(G,q) is a polynomial, that we construct withV,({G},q) that are nonanalytic at
there is a natural generalization, which we assume here, dffq=0 is a regular lattice grapfG}=A. Thus, anticipating
the variableq from integer to complex values. Since an ob- the later discussion in this paper, our work is consistent with
vious upper bound oR(G,q) describing the coloring of an the conjecture thaiin the n— oo limit) a sufficient condition
n-vertex graph withg colors is P(G,q)<q", and hence that W,({G},q) be analytic at =0 is that{G}=A is a
W({G},q)=<gq, it is natural to define a reduced function regular lattice graph(We know from our previous workl3]
that this is not a necessary conditipklVe state it as a con-
W,({G},q)=q *W({G},q). (1.2 jecture since we are not aware of any proof of the analyticity
at 1=0 of W,(A,q) for a regular lattice\ in the literature.
A fundamental question in graph theory concerns whetheindeed, in Ref[12], it was acknowledged that there was no
W, ({G},q) is analytic or not at the origin, =0, of the  general theory for the existence of the lirfiit1) and, hence
z=1/q plane. This question is important in both graph theoryalso, in our notation, the reduced functig , even in the
case of regular lattices.
Before proceeding, it is necessary to clarify the definition
*Electronic address: shrock@insti.physics.sunysb.edu of W({G},q) for values ofq that are not positive integers.
"Electronic address: tsai@insti.physics.sunysb.edu As we discussed in Refl3], for certain ranges of reai,
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P(G,q) can be negative, and, of course, wheis complex, each other by curves$or line§ comprising the union of
s0 isP(G,q) in general. In these cases it may not be obvi-boundaries3. W({G},q) is nonanalytic on these boundaries.

ous,a priori, which of then roots Clearly, B is the same foW({G},q) and W,({G},q). Be-
n Unomitn causeP(G,q) is a polynomial with realactually integer
P(G,q)""={|P(G,q)[*"e*™""}, r=0,1,...n—1 coefficients, it follows thaf3 is invariant under complex con-
jugation, i.e.,
to choose in Eq(1.1). Consider the functioM({G},q) de- B(q)=B(q*). 2.1

fined via Eq.(1.1) starting withq on the positive real axis

where P(G,q)>0, and consider the maximal region in the i o i

complexq plane that can be reached by analytic continuatiorf* P@sic question is whether, for a given fam{i}, some

of this function. We denote this region &. Clearly, the portion of the boundary3 ex}ends to complex |nf|n|ty in the

phase choice in(1.3 for qeR, is that given byr=0, 9 plane, so thaw,({G},q) is nonanalytic at ¥=0 in the

namely, P(G,q)l/n:|P(G’q)|l/n. However, as we showed 1/q plgne. Related to th[s, an |mportant_quest|on is whether

via exactly solved cases in R§L3), there are many families there is a general algorithm for producing a famiig;} of

of graphs {G} for which the areas of analyticity of 9raphs such thatin the—co limit, the boundarys extends

W({G},q) include other regions not analytically connected0 complex infinity in theq plane. We answer this question

to Ry, and in these regions, there is not, in general, any" the af_flrmanve a_nd present the followlng algorlthm.

canonical choice of phase in E(..3). Consider a family of graph$G}. If this family already
A second subtlety in the definition #%({G},q) concerns has the property that the limiting functioN({G},q) has a

the fact that at certain special poirgs, the following limits ~ "€gion boundary3 that extends to complex infinity in the

do not commutd13] [for any choice ofr in Eq. (1.3)]: plane(i.e., to 14=0 in the 14 plang, then we have no work
to do to get such a boundary. So assume {&dtis such that

lim lim P(G,q)Y"# lim limP(G,q)*". (1.4  W({G},q) has a region boundarg that does not extend to
n—o g—qg g—0s N—e complex infinity in theq plane. As discussed in Rdf13]
o . [Sec. lll and theorem 1, Eq3.1)] a rather general form for
One can maintain the analyticity %({G},q) at these spe- e chromatic polynomial of a grap® is
cial pointsqs of P(G,q) by choosing the order of limits in

the right-hand side of Eq1.4): N

W({G},ds)p,,= lim lim P(G,q)™" (1.5 P(Gy.0)=0q(q—1) co(q)+j§l ci(a ()", (2.2

q~>qS n—oo

As indicated, we shall denote this definition Bg,, where
the subscript indicates the order of the limits. Although this
definition maintains the analyticity aV({G},q) at the spe-
cial pointsqg, it produces a functioW({G},q) whose val-
ues at the pointg differ significantly from the values that
one would get forP(G,q.)*" with finite-n graphsG. The
definition based on the opposite order of limits,

wherec;(q) anda;(q) are polynomials irg. Here thea;(q)
andc;.o(q) are independent af, while co(q) may contain
n-dependent terms, such as 1)", but does not grow witi
like a". Obviously, the reality oP(G,q) for real g implies
thatc;(q) anda;(q) are real for realj. The condition tha3
does not extend an infinite distance from the origin in ghe
plane is equivalent to the condition that for sufficiently large
W({G},q0p. = lim lim P(G,q)™" (1.6) lq|, there is one leading term;(q) in Eq. (2.2. Here we
" e goge recall that “leading terna,(q) at a pointq” was defined in
Ref. [13] as a term satisfying |a,(q)|=1 and
gives the expected results such &#({G},q)=0 for |a,(q)|>|a;(q)| for j=/. If the ¢, term is absent and
gs=0,1, and, folGD A, q=2, as well adV((tri),,,q=3)=1 N,=1, then the sol@;(q) may be considered to be leading
(where (tri), denotes a triangular lattice with sites and even if|a;(q)|<1. We require sufficiently larghg| so that,
boundary conditions that do not introduce frustration dor for our analysis, there is a switching between only two lead-
=3), but yields a functionW({G},q) with discontinuities at ing termsa, . In principle there might be such a switching
the set of pointgqs}. In our results below, in order to avoid between more than two, so th&twould include more than
having to write special formulas for the poirgg, we shall  two components running to complex infinity in theplane.
adopt the definitiorD, but at appropriate places will take However, for the families that we have constructed via our

note of the noncommutativity of limitl.4). algorithm and studied, we find, for sufficiently largen(q)|,
only two such components. As required by the symmetry
Il. CONSTRUCTION OF FAMILIES (2.1), these components are mapped to each other under
WITH W,({G},q) NONANALYTIC AT 1/ q=0 complex conjugation. Now adjoin a complete gragh to

G, in such a way that each vertex K, is adjacent, i.e.,
connected by bond&edge$, to each of the vertices d&,,.
Here, recall that g-vertex graph is defined as “complete”
In general, as discussed in RgL3], for a given family  and labeledK,, if each vertex is completely connected by
{G}, the correspondingV({G},q), at least as defined via the bonds with all the other vertices of ti&, graph. Denote the
order of limits(1.5), is an analytic function in certain regions resultant graph asK({xG,). A basic theorem of graph
of the complexq plane. These regions are separated frontheory states that if a grapH is obtained by adjoining a

A. General algorithm and calculation
of chromatic polynomial
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vertex to a graptG such that this point is adjacent to all of p=2. (2.6)

the vertices of5, then the chromatic polynomials are related

according to

_ B The conditions(2.6) and (2.5 will be assumed henceforth.
P(H.a)=qP(G.a-1). 23 Using Eq.(2.4) andr applications of the addition-contraction

Applying this iterativelyp times, we obtain the result that theorem[15], we obtain the important result

p—1
P(Kpx Gy, @)=| I (a=9)|P(Gr.a=p). 24 P((K,xGy)p,0)=P(KyXGy,q) +bP(K, 1XGy,q)
p—2

Next, we select one vertex i{, and removeb bonds con- _ _ —(p—1
necting it to other vertices ok,,. Since each vertex df, sﬂo (@=s)jila=(p~1)]
hasp—1 bonds connecting it to other vertices i§f,, this
implies that we can only remove this many such bonds, i.e., XP(G,,q—p)+bP(G,,q—(p—1))}.

1<b<p-1. (2.5 (2.7

We denote the resultant graph as,X G,),,, where the o ) )
subscript signifies the above remova) (of b bonds. In or- This is our general forr_nula for the chromatic polynomlal of
der for this to be nontrivial, i.e., fob=1, we thus require (KpXGn)rp, for an arbitraryn-vertex graphG, . Substitut-

that ing the expressioKi2.2), we obtain
p-2 Nga
P((prGn)rb,q)=Lﬂo (q—s)H(q—pH)(q—|o)(0|—|o—1)[co(q—|o)+j§=l1 cj<q—p)aj(q—p)”]
Na
+b(g—p+ 1)(q—p)[co(q—p+ 1)+j§=ll ci(@—p+1aj(q—p+ 1)”] : (2.9
|
B. Boundary B for {(K,x G)} [given that the basic conditio2.5 is satisfied. Let
We denote the—c limit of the families K,x G, and q=qR+iq|. One can next enumerate the various cases pos-
(KpXGp)p as sible fora,(q). The basic theorem that the coefficient of the
_ highest-order term,q", in the chromatic polynomial
lim K, X G, ={KyX G} (29  P(G,,q) of anyn-vertex graphG, is unity implies that if a
n—e dominant terma,(q) is a polynomial of degregax,
and Smax
a/(a)=2 aq® (213

Iim(KpXGn)rb:{(KpXG)rb}v (2.10
n—oo
then

respectively. As discussed in R¢l.3], the boundan3 for
W({G},q) is the locus of points in thg plane where there is as =1 (2.19
a switching between different leading terms in Eq. (2.2).
Since{G} was assumed not to hakextending to infinit_y in Consider, for example, the case wharéq) is a linear func-
theq plane_, it follows that for large enougly|, there is a ton of q a,(q)=aq+ao which reduces to
single leading terrﬂa/(q)_| in Eg. (2.2). Hence from Eq. a,(q)=q+ ap by Eq.(2.14. Then Eq.(2.11 yields
(2.8), we see that at sufficiently lardg|, the boundarys for '

the limiting functionW({K,X G),}.q) is determined by the
equality o q.=p—(3+ag) for Spa=1 (2.19

la,(q—p)|=|a,(q—p+1)|. (2.1)  with g undetermined, i.e., a vertical line segment extending

to *ico+p—(3+a) in the complexq plane. This type of
behavior is exemplified by graphs involvirg, adjoined to
o trees or chains of triangles, in which one bond in #g
Bis independent db for {(K,XG);,}  (2.12  subgraph is removed. We shall discuss these below.

Note that this is independent bf so that
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If a,(q) is a quadratic function o}, a,(q)=qg°+ a,q Hence, the boundar consists of the vertical lin€3.2) with
+ ag, then Eq.(2.11) yields an equation that has, as its only —ioosqlsioo. The diagram describing the regions of analy-

acceptable solution, ticity of the limiting function W({(K,XT),},q) consists of
two regions,
A, =P—3(1+ay) asq|—e for spa=2. Ry:Re(q)>p+ L (3.3
(2.1
and
Hence, the boundar§ in this case is, for sufficiently large R,:Re(q)<p+ 3. (3.4)

|a,|, again a vertical line in the complex plane located at
the value ofq  given by Eq.(2.16 and extending tati.  Mapped to the X plane(a conformal transformationthe
This type of behavior is exemplified in our discussion belowimage of the vertical line is a closed curve, which crosses the
of graphs involvingK, adjoined to chains of squargse.,  real axis at the inverse of, in Eq.(3.2) and at the origin. In
ladder graphswith various boundary conditions, in whieh  the 14 plane, the image of regioR; is a compact region
bonds are removed from thi&, subgraph in the manner enclosed by this closed curve, while its complement is the
discussed above. In general, as we shall show, if one adjoirimage of the regiorR,. We find that
K to an open chain ok-gons arranged such that two adja-
centk-gons intersect along one of their mutual edges, then W({(KpXT)p},d)=q—p for geRy, (3.5
the resultant chromatic polynomial has the fof#18) with
Smax= K—2 andcy(q)=0 (there should be no confusion in
the notation ofk for the k-gons andK for K ).

This, then, is the algorithm for producing families o
graphs depending on three parametprdy, andn, with the

i.e., W,({(KpXT)p},q)=1—p/q. For ge Ry, if q is real,

P((KyXTp)p,q) alternates in sign as increases through

¢ even and odd integers, so, strictly speaking, the limit as
n—oo does not exist. Of course, there is also a corresponding

property that the limiting functionW, is nonanalytic at Varation in phases in this limit for the case of compigx

1/g=0. We have proved this by calculating first the chro- € Re- As we have discussed before, in such a situation, at

matic polynomials for finite graphs and then their respectivé®2St the magnitude does have a well-defined limit:

limiting functionsW. The key ingredients in the construction v ey

are, first, the adjoining of the complete gragp to G,,, and IWE(KpX Do} @)l =la=p=1] forgeR, (3.6

second, the removal df of the bonds connecting one vertex o, equivalently|W, ({(K,X T)p},@)|=|1— (p+1)/q|. This

in K, to other vertices oK, . Together, these guarantee, via simple example thus explicitly illustrates the nonanalyticity
Eq. (2.7),_ that the equation for the degeneracy of the leadingyt 14=0; even aside from the choice of the phase in region
terma, is of the form(2.11), and the locus of points that R the two expressions above for the magnitude of the re-
solve this degeneracy equation extends to complex infinity iy, cedw, functions are different. The nonanalyticity in the
the g plane, as we have shown. o _ W, function thus involvegfor any choice of phases in Eq.
W(_a next give some illustrations of the application of this (1.3 in R,] a discontinuity in the first derivativeW, /dz,
algorithm. wherez=1/q atz=0.
Although these are all exact results for the>oo limit, it
is of some interest to see how these boundaries develop by
studying chromatic zeros for finita. Here, we recall the
definition that the “chromatic zeros” of a grapB are the
A (KpX T zeros of the chromatic polynomid(G,q) for this graph.
We carried out these types of studies for a number of fami-
lies of graphs in Refd.13] and[16]. A general question that
we investigated was the following: excluding a well-
understood subset of chromatic zeros at certain discrete real
integer values, and considering the remainder, how close are
these remaining zeros, for finite, to the boundanys that
obtains in then—oo limit? From our study of the bipyramid

IIl. FAMILIES OF GRAPHS WITH W, NONANALYTIC
AT 1/q=0

Perhaps the simplest illustration is for the fanmily < T,
formed by adjoining a succession pfvertices to each of the
n vertices of a tree graph, and to each other. Removirgy
bonds connecting a vertex &, to other vertices oK, in
the manner described above yields the graiiX(T,)p -
From Eq.(2.7), we calculate

p graph, in Ref[13] (see also Ref.14]), it was found that the

P(KpXTn)rp,a)= 11 (q—s)}[(q—p—l)”‘1 chromatic zeros near to the real axis in theplane (aside
s=0 from the discrete zeros gt=0 and 1 and a zero very near to
+b(q-p)"2]. (3.1) g=Be;=2.618...) lie on ornear to the arcs forming the

boundary curvesB(R;,R;) and B(R,,R;) [defined in

greater generality in Eq$3.11), (3.12 below], but the outer
Our general analysis in Eqg2.11)—(2.15 applies with  zeros do not lie very close to the line segment8@R; ,R,),
Smax= 1, @p=—1, andcy(gq)=0 so that, from the general given by thep=2 special case of E43.13 below, and only
formula (2.15 we have approach these line segments slowlynamcreases. We in-
ferred that this latter behavior was connected with the fact
that this component of the boundary extends to complex in-

— 1 —
q,=p+3 for G=(K XT)p. (3-21 finity in the q plane and observed that this type of deviation
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FIG. 1. Chromatic zeros ofK,X Ty), for p=4, n=18, and FIG. 2. Diagram showing regional boundaries compridiipr

b=1(-), 2 (+), and 3 (x), where the symbols for the points are \y({(Kk,x C),,},q). Breaks in the horizontal axis indicate thais
given in parentheses. In thre—ce limit, our exact results give the  ap arpitrary integer= 2.

continuous region boundaly as thep=4 special case of E¢3.2),

i.e., the vertical line with Ref) =9/2 and Im) arbitrary, indepen- ever, because they(q) terms are nonzero in this case, the
dent ofb by Eq.(2.12. region boundaries in the vicinity of the real axis differ from
the simple vertical line found foW({(K,XT)},q). By

did not occur for families of graphs whose boundarieés methods similar to those that we used in Rgf3] (i.e.,

were compact and did not extend to complex infinity. working out the conditions for the degeneracy of the leading
Here we have carried out an analogous study of the chraerms in P), we find that the region diagram for

matic zeros of K, X T,),, and we find similar behavior as a W({(KyxC)rp},0) consists of three regions:

function ofn. Since an interesting feature here is the depen-

dence of the locations of chromatic zeroskmnwe focus on R,: Req)>p+3 and |g—p|>1, (3.8
this. In Fig. 1 we show the results far=4 andn=18 for
b=1,2, and 3, the full range allowed by E@.5. The out- R,: Re(q)<p+3 and |g—(p+1)|>1, (3.9

ermost zero and its complex conjugate do not lie very near to
the vertical line withq_=9/2 given by thep=4 special case and

of Eq. (3.2). As b increases from 1 to 3, this outermost zero
moves to larger|q,| and slightly smallerq_, and hence

slowly toward the above-mentioned vertical line. From Eq.The boundaries between these regions are thus the two cir-
(3.2), it follows that for p=4, there are also discrete chro- cular arcs
matic zeros atj=0, 1, 2, 3, and 4, and these are evident in

Fig. 1.

R;: |g—p|<1 and |g—(p+1)|<1. (3.10

B(Ry,Rs):q=p+e? - g< a<g (3.1

B. (prcn)rb
A second illustration is provided by the family of graphs

and

(KpXCy)rp Obtained by starting with the-wheel K, X C,, s 2 A
with p=2, whereC, is the n-vertex circuit graph, and re- B(Ry,Rs):q=p+1+€? —<¢<— (312
moving b bonds connecting a vertex K, to other vertices
in K. From the general formula E¢2.7) we calculate together with the semi-infinite vertical line segments
p-2 \/5
P(KpXCp)rp,q)= !:[O (q=s)|[(a—p+1)(g—p—1) B(R;,Ry)={q}:Re(q)=p+3 and |Im(q)|>7.
_ (3.13
x{(@=p-1)"t+ (-1
_ These meet at the intersection points
+b(a—p){(a—p)" +(~ 1)}, P
3. 1 3
(3.7 Q. =P+ 5Ei—5 (3.149

Our general analysis in Eqg2.11)—(2.15 applies with

smax=1 anday=—1 so that again, for sufficiently lardg|, = The arcsB(R;,R;) and B(R,,R3) cross the real axis at
B contains the vertical lines extending tdicc with g=p+1 and q=p, respectively. The region diagram for
q.,=p+1/2, as was the case WItV({ (KpXT)p},q). How-  W({(K,X C)},0q) is shown in Fig. 2.
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8.0 ‘ ; : ; ; of B(R;,R,) given by thep=4 special case 0{3.13,
. namely,q,=9/2, |q,|=/3/2 and only approach these line
607 : segments slowly am increases. Evidently, the behavior of
40 - ’ i the chromatic zeros as functionsofis qualitatively similar
to that which we observed in Fig. 1. We have carried out
2.0 - analogous studies of the chromatic zeros for other families of
B ool . * ] graphs constructed via our algorithm to have region bound-
E " ariesBB extending to complex infinity and have found similar
20 f - results.
40T . | C. [pr(Ch)k,n]rb
6.0 | * We define an open chain of k-gons constructed such
’ that a giverk-gon intersects with the nektgon in the chain
80,5 oo 40 8.0 12.0 16.0 along one of their mutual edges &), , where the number

Re(q) of vertices is

n=(k—2)m+2. (3.17

The chromatic polynomial for the open chainrafk-gons is

FIG. 3. Chromatic zeros ofK,XC), for p=4, n=18, and
b=1 (-), 2 (+), and 3 (X). In then—oe limit, our exact results
give the continuous region boundayas thep=4 special case of

o= P((Chn D=0(a- D™, (318
Mapp_ed to the I plane, the image of' the vertical Iing is where

a curve in the right-hand half-plane, which passes vertically

through the origin, enclosing the image Rf. The enclosed k-2 k—1

regionR; remains enclosed, while the left-hand regi®sin Dk(q)=820 (— 1)5( S )qk‘z‘s. (3.19

the g plane maps to the region exterior to the image®fRpf
and R; in the 14 plane. The casp=2 is the bipyramid
family of graphs[13,14]. We find that

Next, consider the grapK,Xx (Ch), , obtained by adjoining

K, to the chain ofn k-gons, (Chy ,,, wheren is again given

W({(K,XC)p},@)=g—p forgeR;. (3.19 by Eg.(3.17. From Eq.(2.4), we have
A A p+1
For the other regions, we have, in general,
g g P(KpX (Chn.@)=| [T (a=9) [Di(a—p)™
la—(p+1)[ forqeR, B
WAKX Ot D=1} g (3:20
. (3.16  The chromatic polynomiaP([K ,X (Ch)y,alrs ,q) is then ob-

tained by substitution of Eq3.20 into Eq.(2.7). Note that
TheW, functions in region®k; andR, are the same as those
Dy(a)=a,(q) (3.2

in the corresponding regions for the previous family,
in Egs.(2.8), (2.11), and(2.13 general class of graphs. From

{(KpXT)rp}, while regionR; has no analog for that family.
As before, the nonanalyticity iW, is most conveniently the above substitution, we find that the resultant chromatic
polynomial is of the form(2.8) with

discussed in the @i/plane. There are two regions contiguous
across the image oB at the origin, 14=0, namely, the
images under inversion of regiofy andR,. The nature of Co(d)=0, Spac=k—2 for [KpX(Ch)ynlp-

the nonanalyticity inW, at 1/4=0 is the same as that in the ’ (3.22
{(KpXT)pp) family. o .

Again, it is of interest to calculate the chromatic zeros forFor sufficiently large|q,|, the region boundaryB for
some finite graphs in these families and see how close the/({[KpX<(Ch)]p},q) consists of complex-conjugate verti-
lie to the locus of zeros in the— limit. We have carried ~cal line segments extending tbic with Re(q)=q_ equal
out such a study. As an illustration, in Fig. 3, we show theto
chromatic zeros forK,xC,),, with p=4, andn=18 for
b=1, 2, and 3. This may be compared with {e 4 special
case of the plot of the region diagram in Fig[vhich is the
same for allb, by the result(2.12]. Note that the discrete

(3.23
chromatic zeros atj=0, 1, 2, and 3 are not part of the _ ) _
continuous locus of zeros forming in the n—co limit. For ~ Where the notation convention of E®.10 is used. Note

comparison, the previously mentioned bipyramid graph ighat if one considers chains &fgons withk progressively -
the casep=2, for which only the single valub=1 is al- larger and larger, this approaches the limit
lowed. We find that the complex chromatic zeros near thdiMk—~0, =P+ 1/2. As defined in the Introduction, the re-
real axis lie on or close to the ar#%R;,R;) andB(R,,R;),  gion to the right of this boundary iB;, and we denote the
but the outer zeros do not lie very close to the line segmentgegion to the left afR,. In general(in particular, fork=5)

0P+ 55y TOr {IKpX(ChiJu}  with k=3
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there will be other regions within whichW({[K,  W({[KyX(Ch)]ip},a)=Dy(q—p+1)* 2 for qeRy,
X (Ch)lrpt,q) is analytic but we only nee®; andR, for (3.29

our discussion of the nonanalyticity ag¥ 0 since it is only _ Uk—2)
the images under inversion of these two regions that bordeer({[KPX(Ch)k]rb}’Q)| =|D(a=p)| for geR,.

the origin of the 1¢ plane. For the resultant limiting func- (329
tions W we calculate Hence
|
Kk—1 1U(k—2)
W, ({[Kp X (Ch) oo} o) = (1——){2 (-1) ( ] )(q—p+1>5] forqeRy, (326
k—2 k— Uk=2)
p
(W, ({[KpX (Ch)rp} @) = (1—5){2 (— 1)( )(q p)” } for geR,. (3.27)
For k=4, these have the expansions neay=10
k=1) y )
W, ({[KpX(Ch)]ip},@)=1— p—1+m g +0(g %) aslh—0 withgeR; (3.28
(e.g., 14—07 through real valugsand
k=1) _, s )
(W ({[Kp X (ChJr}, @) =|1=| p+j—5|a7"+0(a™%)| as14—0 withqeR,. (3.29

These expressions also apply for the case8 but terminate with th@(q 1) term, sinceD(q) is linear and the exponent
1/(k—2) in Egs.(3.24 and(3.25 is just unity. Thus, for alk=3, these results indicate explicitly the nature of the nonana-
lyticity of the reduced functioW, ({[K, X (Ch),];,},q) at 1lg=0. As in our earlier examples, this nonanalyticity involves, in
general, the sudden onset of a complex phase and apart from this, even for the magnitude, a discontinuity in the first derivative
dW,/dz atz=1/q=0.

Since the lowest two caselss= 3,4 exhibit particularly simple boundarié% we give a few explicit results for them. For

k=3 we find

p

P(KpX(Ch)gplp.q)= [ HO (q—s)}[(q— p—1)(q—p—2)"+b(g—p—1)"],

where from Eq.(3.17, m=n-2. This has the form of our
general Eq(2.8) with lineara,(q), ag=—2, andcy(q)=0
so that in then—« limit, by Eq. (2.15), it follows that the
boundaryB consists of the vertical line

q.=P+3 for {[KyX(Chs]p}. (3.3

The general formula&3.26 and (3.27) reduce to the simple
expressions

forgeR;
(3.32

p+1
W, ({[KpX(Ch)g]ip},q)=1— a

and

+2
IW, ({[KpX (Ch)3lrp}, )| = ‘ 1- pT forgeR,.
(3.33

(3.30

For thek=4 case,D,(q)=a,(q)=qg°—3q+3, so that
Eq. (3.23 or the quadratic special case E@®.16 with
a1=—3 andcy(q)=0 applies and yields

q.=p+1 for W{[Kpx(Chalw}t.a).  (3.39

Using Egs.(3.20 and (2.7), we determine that the region
boundary of W({[K, ><(Ch)4],b} g) is again precisely the
vertical line withq_ given by Eq.(3.34 and|q,| arbitrary.
Note that this holds even thoudh(q)=a,(q) is quadratic.
However, the generic behavior for highkris that in the
vicinity of the real axis,B is more complicated, and the
complex-conjugate vertical line segments vaQ given by
Eq. (3.23 apply for |q,|>«y, where k, is a k-dependent
constant.
From Egs.(3.26 and(3.27) we have

\Nr({[Kp>< (Ch)A]rb}!Q)

=[1-(2p+1)q '+ (p?+p+1)g 4¥? forqeR;
(3.35

and
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|Wr({[Kp><(Ch)4]rb}vq)| 3.0 A
=|[1—(2p+3)q '+ (p?>+3p+3)q ?]|*? forgeR,. o0 |
(3.36
10

D. (pr Ln,bc)rb

A slightly more complicated illustration is provided by T 44 |
starting with am-vertex ladder graph, i.e., chain of squares, £
as in thek=4 case discussed above, but with periodic or
twisted boundary conditiongather than open boundary con-
ditions) denoted. , ypcandL , 1, respectively. Note that any
even number of twists is equivalent to no twist and any odc
number of twists is equivalent to one twist. Following our
general algorithm in2.7), we adjoinK, to this ladder graph 30,5 Ag— : 5 o
and then remové of the bonds connecting a vertex in the ’

. - . : Re(q)
K, graph to other vertices iK,. Using the basic results
FIG. 4. Diagram showing regional boundaries compridifpr

—(n2 n/2
P(Lnpbe,@)=(q°=39+3)"+(q—1) W({(K X Lnd 1}, 0) where xbc denotes periodic or twisted bound-
X{(3—q)"*+(1-q)"2 +qg>—3q+1 ary conditions(pbc, thg. Breaks in the horizontal axis indicate that
p is an arbitrary integee2.
(3.37

-1.0

2.0

and hence thaw,({G},q) is nonanalytic at =0 is to
produce a chromatic polynomial with the feature that there
P(Ln,tb(:aq):(q2_3q+3)n/2+(q_1) are two leading terms with a degeneracy condit{grll).
From Eq.(2.7), these leading terms are actually the same
x{(3=q)"*~(1-q)" -1 (3.39  function, just evaluated at arguments that differ by unity, as
is evident in Eq(2.11). Here we generalize from this study
b state the following theorem:

Theorem Consider a family ofn-vertex graphs and its
n—oo limit {H}. With P(H,,q) in the form of Eq.(2.2), the
region boundary3 of the resultant asymptotic limiting func-

_ tion W({H},q) extends to complex infinity in thg plane,

W (KpX Lpodrp} @) =WH(KpX Lipdrp}, @) (3.39 and henceW,({H},q) is nonanalytic at =0 in the 14
and hence the boundari&sare identical for these two func- plane, if and only if the locus of solutions of the degeneracy
tions. In both cases, from our general results, it follows thacondition of leading terms
B contains complex-conjugate vertical line segments that ex-
tend to+ico with la, (q)|=]a/(q)] 4.2

and

we can apply our general analysis above. First, we note th
because the terms raised to thth power, which can be
leading terms as discussed in conjunction with &), are
the same folP(L, ypc,q) andP(Lp e, d), it follows that

9.=p+1 (3.40 extends to complex infinity.

Of course, this locus of points obeys the conditi@ri).
Our algorithm yields the family of graphK{xG,),, de-
pending onp andb, whosen— limit, {(K,XG),} satis-
fies the above condition.

* : A general feature of our results is that for the families of
Clnt G= P+ 1 £1V3. (341 graphs we have constructed and studied, for wii@xtends

At these intersection points, the boundary bifurcates intc}q complex infinity in theq plan_e,_the image, unde_r inver-
two, which extend down and cross the real axis at sion, of B passes through the origin of theglplane with an
infinite tangent, i.e., vertically. This reflects the property that

=p,p++2. (3.42  the portion ofB3 that extends to complex infinity is comprised
Ricross of a vertical line segment and its complex conjugate, with a

In Fig. 4 we show a plot of the region diagram for fixed value ofRe(q). .
W (Ko X Lopd o} @) =W (K, X Lydrbt.a); again, by Eq. One salient feature of our study is clearly that none of our
(2.12, ?t is ?ndependent ob. P families of graphs withV,({G},q) nonanalytic at =0 is

a regular lattice graph. Our results are therefore consistent

with the assumption underlying the original series calcula-

tions, that a sufficient condition foW, ({G},q) to be analytic

at 1=0 is that{G} be a regular lattice graph. We state
As we stated at the end of Sec. Il, the key ingredient inthis formally as the following conjecture:

our algorithm to construct families of grapf&} with the Conjecture Let {G} denote the infinites limit of a family

property thatB extends to complex infinity in theg plane  of graphsG,,. A sufficient condition for the resultant re-

as for the case of free boundary conditions, E934). These
line segments extend outward gp= * o from the intersec-
tion points

q

IV. A GENERAL CONDITION GOVERNING THE
(NON)ANALYTICITY OF W, ({G},q) AT 1/q=0
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duced functiondV,({G},q) to be analytic at =0 is that
{G} is a regular lattice grapfG}=A.
It is clear from Ref[13] that the property tha{G} be a
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involving packings with different regular polytopes under the
term “regular lattice” in the above conjectur@ere, poly-
tope is the general mathematical object that subsumes the

regular lattice is not a necessary condition for the associategolygon in two dimensions and polyhedron in three dimen-

W, ({G},q) to be analytic at f=0; in that work we calcu-
lated W({G},q) functions for a number of familie§G}

which are not regular lattice graphs, but for which the corre-

spondingW, ({G},q) functions are analytic at 4~0.
For a regular latticeA with coordination numbel, a
natural reduced function is defined by

W({G},a)=a(1—q H¥W(A,y)

for which the largeg Taylor series expansion [40-12

4.2

oo

— N 1
WAY) =1+ wy oy y=——. (43
n=1 q

Clearly, W(A,y) is analytic aty=0 if and only if W,(A,q)
is analytic at 14=0. In Refs.[13,17,1§ we have made de-
tailed comparisons of existing largeseries expansions with
high-precision Monte Carlo measurements W{A,q) as
well as rigorous lower bounds that we have deriy/&8] and
have found excellent agreement fq=4 on a number of
different lattices, including both homopolygor(alg., square

and honeycomplattices and heteropolygonal Archimedean
lattices (composed of regular polygons of more than one

type, such that all vertices are equivalentiz., the 4 82
lattice, for which we have calculated a largeserie$. This

sions[20]).

V. CONCLUSIONS

In this paper we have addressed a fundamental problem in
graph theory with important implications for statistical me-
chanics, namely, the question of the analyticity of
W, ({G},q) at 1g=0. In order to understand the phenom-
enon of nonanalyticity of this function atd+ 0 better, we
have constructed a general algorithm for producing infinitely
many families of graphs, each depending on two parameters
p andb, with W, functions that are nonanalytic atgt O.

We have studied the properties of several of these families.
We have also stated a general necessary and sufficient con-
dition on the chromatic polynomial of a family of graphs
such that the resultaW, ({G},q) is nonanalytic at §=0.

This condition explains the source of the nonanalyticity in
the cases where it occurs. The results of our study are con-
sistent with the conjecture that a sufficient conditiome
know that this is not a necessary condidiéor W, ({G},q) to

be analytic at =0 is that{G}=A is a regular lattice
graph.
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