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Families of graphs with Wr„ˆG‰,q… functions that are nonanalytic at 1/q50

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
~Received 24 March 1997!

DenotingP(G,q) as the chromatic polynomial for coloring ann-vertex graphG with q colors, and con-
sidering the limiting functionW($G%,q)5 limn→`P(G,q)1/n, a fundamental question in graph theory is the
following: is Wr($G%,q)5q21W($G%,q) analytic or not at the origin of the 1/q plane ~where the complex
generalization of q is assumed!? This question is also relevant in statistical mechanics because
W($G%,q)5exp(S0 /kB), whereS0 is the ground state entropy of theq-state Potts antiferromagnet on the lattice
graph $G%, and the analyticity ofWr($G%,q) at 1/q50 is necessary for the large-q series expansions of
Wr($G%,q). AlthoughWr is analytic at 1/q50 for many$G%, there are some$G% for which it is not; for these,
Wr has no large-q series expansion. It is important to understand the reason for this nonanalyticity. Here we
give a general condition that determines whether or not a particularWr($G%,q) is analytic at 1/q50 and
explains the nonanalyticity where it occurs. We also construct infinite families of graphs withWr functions that
are nonanalytic at 1/q50 and investigate the properties of these functions. Our results are consistent with the
conjecture that a sufficient condition forWr($G%,q) to be analytic at 1/q50 is that$G% is a regular lattice
graphL. ~This is known not to be a necessary condition.! @S1063-651X~97!04110-X#

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The chromatic polynomialP(G,q) of an n-vertex graph
G and the asymptotic limiting function

W~$G%,q!5 lim
n→`

P~G,q!1/n ~1.1!

play important roles in both graph theory@1–6# and statisti-
cal mechanics@7–9#. HereP(G,q) is defined as the numbe
of ways of coloring the graphG with q colors such that no
two adjacent vertices have the same color, and$G% denotes
the limit asn→` of the family ofn-vertex graphs of typeG.
The connection with statistical mechanics is via the elem
tary equality P(G,q)5Z(G,q,T50)PAF, where
Z(G,q,T50)PAF is the partition function of the zero
temperatureq-state Potts antiferromagnet~AF! @8,9# on the
graph G, and the consequent equality~in the n→` limit !
W($G%,q)5exp@S0($G%,q)/kB#, whereS0($G%,q) denotes the
ground state entropy of theq-state Potts AF on$G% ~typi-
cally a regular lattice,$G%5L with some specified boundar
conditions!. Given the fact thatP(G,q) is a polynomial,
there is a natural generalization, which we assume here
the variableq from integer to complex values. Since an o
vious upper bound onP(G,q) describing the coloring of an
n-vertex graph withq colors is P(G,q)<qn, and hence
W($G%,q)<q, it is natural to define a reduced function

Wr~$G%,q!5q21W~$G%,q!. ~1.2!

A fundamental question in graph theory concerns whet
Wr($G%,q) is analytic or not at the origin, 1/q50, of the
z51/q plane. This question is important in both graph theo
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and statistical mechanics because a standard method
studying this function or equivalent reducedW functions is
to calculate a large-q Taylor series expansion about the poi
1/q50 @10–12#. However, if Wr($G%,q) is nonanalytic at
1/q50, then one cannot carry out such a Taylor series
pansion in the usual manner. Indeed, we recently discus
an example, namely, the bipyramid graphBn , for which
Wr($B%,q) is not analytic at 1/q50 @13# ~see also@14#!.

Clearly it is important to understand better the differenc
between the families of graphs that yieldWr($G%,q) func-
tions analytic at 1/q50 and those which produceWr($G%,q)
functions that are nonanalytic at 1/q50. In the present pape
we shall address this problem. We shall give a general c
dition that determines whether or not a particularWr($G%,q)
is analytic at 1/q50. This explains the source of the nonan
lyticity in the cases where it occurs. We also construct in
nite families of graphs withWr functions that are nonanalyti
at 1/q50. These serve as a very useful theoretical labo
tory, and we study the properties of the resultantWr func-
tions in some detail. A salient point is that none of the$G%
that we construct withWr($G%,q) that are nonanalytic a
1/q50 is a regular lattice graph$G%5L. Thus, anticipating
the later discussion in this paper, our work is consistent w
the conjecture that~in the n→` limit ! a sufficient condition
that Wr($G%,q) be analytic at 1/q50 is that $G%5L is a
regular lattice graph.~We know from our previous work@13#
that this is not a necessary condition.! We state it as a con
jecture since we are not aware of any proof of the analytic
at 1/q50 of Wr(L,q) for a regular latticeL in the literature.
Indeed, in Ref.@12#, it was acknowledged that there was n
general theory for the existence of the limit~1.1! and, hence
also, in our notation, the reduced functionWr , even in the
case of regular lattices.

Before proceeding, it is necessary to clarify the definiti
of W($G%,q) for values ofq that are not positive integers
As we discussed in Ref.@13#, for certain ranges of realq,
3935 © 1997 The American Physical Society
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3936 56ROBERT SHROCK AND SHAN-HO TSAI
P(G,q) can be negative, and, of course, whenq is complex,
so is P(G,q) in general. In these cases it may not be ob
ous,a priori, which of then roots

P~G,q!1/n5$uP~G,q!u1/ne2p ir /n%, r 50,1, . . . ,n21
~1.3!

to choose in Eq.~1.1!. Consider the functionW($G%,q) de-
fined via Eq.~1.1! starting withq on the positive real axis
whereP(G,q).0, and consider the maximal region in th
complexq plane that can be reached by analytic continuat
of this function. We denote this region asR1. Clearly, the
phase choice in~1.3! for qPR1 is that given by r 50,
namely, P(G,q)1/n5uP(G,q)u1/n. However, as we showe
via exactly solved cases in Ref.@13#, there are many families
of graphs $G% for which the areas of analyticity o
W($G%,q) include other regions not analytically connect
to R1, and in these regions, there is not, in general, a
canonical choice of phase in Eq.~1.3!.

A second subtlety in the definition ofW($G%,q) concerns
the fact that at certain special pointsqs , the following limits
do not commute@13# @for any choice ofr in Eq. ~1.3!#:

lim
n→`

lim
q→qs

P~G,q!1/n5” lim
q→qs

lim
n→`

P~G,q!1/n. ~1.4!

One can maintain the analyticity ofW($G%,q) at these spe-
cial pointsqs of P(G,q) by choosing the order of limits in
the right-hand side of Eq.~1.4!:

W~$G%,qs!Dqn
[ lim

q→qs

lim
n→`

P~G,q!1/n. ~1.5!

As indicated, we shall denote this definition asDqn , where
the subscript indicates the order of the limits. Although t
definition maintains the analyticity ofW($G%,q) at the spe-
cial pointsqs , it produces a functionW($G%,q) whose val-
ues at the pointsqs differ significantly from the values tha
one would get forP(G,qs)

1/n with finite-n graphsG. The
definition based on the opposite order of limits,

W~$G%,qs!Dnq
[ lim

n→`

lim
q→qs

P~G,q!1/n ~1.6!

gives the expected results such asW($G%,qs)50 for
qs50,1, and, forG$n, q52, as well asW„(tri) n ,q53…51
„where (tri)n denotes a triangular lattice withn sites and
boundary conditions that do not introduce frustration forq
53…, but yields a functionW($G%,q) with discontinuities at
the set of points$qs%. In our results below, in order to avoi
having to write special formulas for the pointsqs , we shall
adopt the definitionDqn but at appropriate places will tak
note of the noncommutativity of limits~1.4!.

II. CONSTRUCTION OF FAMILIES
WITH Wr„ˆG‰,q… NONANALYTIC AT 1/ q50

A. General algorithm and calculation
of chromatic polynomial

In general, as discussed in Ref.@13#, for a given family
$G%, the correspondingW($G%,q), at least as defined via th
order of limits~1.5!, is an analytic function in certain region
of the complexq plane. These regions are separated fr
i-
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each other by curves~or lines! comprising the union of
boundariesB. W($G%,q) is nonanalytic on these boundaries.
Clearly, B is the same forW($G%,q) and Wr($G%,q). Be-
causeP(G,q) is a polynomial with real~actually integer!
coefficients, it follows thatB is invariant under complex con-
jugation, i.e.,

B~q!5B~q* !. ~2.1!

A basic question is whether, for a given family$G%, some
portion of the boundaryB extends to complex infinity in the
q plane, so thatWr($G%,q) is nonanalytic at 1/q50 in the
1/q plane. Related to this, an important question is whethe
there is a general algorithm for producing a family$G% of
graphs such that in then→` limit, the boundaryB extends
to complex infinity in theq plane. We answer this question
in the affirmative and present the following algorithm.

Consider a family of graphs$G%. If this family already
has the property that the limiting functionW($G%,q) has a
region boundaryB that extends to complex infinity in theq
plane~i.e., to 1/q50 in the 1/q plane!, then we have no work
to do to get such a boundary. So assume that$G% is such that
W($G%,q) has a region boundaryB that does not extend to
complex infinity in theq plane. As discussed in Ref.@13#
@Sec. III and theorem 1, Eq.~3.1!# a rather general form for
the chromatic polynomial of a graphG is

P~Gn ,q!5q~q21!H c0~q!1(
j 51

Na

cj~q!aj~q!nJ , ~2.2!

wherecj (q) andaj (q) are polynomials inq. Here theaj (q)
andcj Þ0(q) are independent ofn, while c0(q) may contain
n-dependent terms, such as (21)n, but does not grow withn
like an. Obviously, the reality ofP(G,q) for real q implies
thatcj (q) andaj (q) are real for realq. The condition thatB
does not extend an infinite distance from the origin in theq
plane is equivalent to the condition that for sufficiently large
uqu, there is one leading termaj (q) in Eq. ~2.2!. Here we
recall that ‘‘leading termal (q) at a pointq’’ was defined in
Ref. @13# as a term satisfying ual (q)u>1 and
ual (q)u.uaj (q)u for j 5l . If the c0 term is absent and
Na51, then the solea1(q) may be considered to be leading
even if uaj (q)u,1. We require sufficiently largeuqu so that,
for our analysis, there is a switching between only two lead
ing termsal . In principle there might be such a switching
between more than two, so thatB would include more than
two components running to complex infinity in theq plane.
However, for the families that we have constructed via ou
algorithm and studied, we find, for sufficiently largeuIm(q)u,
only two such components. As required by the symmetr
~2.1!, these components are mapped to each other und
complex conjugation. Now adjoin a complete graphKp to
Gn in such a way that each vertex inKp is adjacent, i.e.,
connected by bonds~edges!, to each of the vertices ofGn .
Here, recall that ap-vertex graph is defined as ‘‘complete’’
and labeledKp if each vertex is completely connected by
bonds with all the other vertices of theKp graph. Denote the
resultant graph as (Kp3Gn). A basic theorem of graph
theory states that if a graphH is obtained by adjoining a
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vertex to a graphG such that this point is adjacent to all o
the vertices ofG, then the chromatic polynomials are relat
according to

P~H,q!5qP~G,q21!. ~2.3!

Applying this iterativelyp times, we obtain the result that

P~Kp3Gn ,q!5F )
s50

p21

~q2s!GP~Gn ,q2p!. ~2.4!

Next, we select one vertex inKp and removeb bonds con-
necting it to other vertices ofKp . Since each vertex ofKp
hasp21 bonds connecting it to other vertices ofKp , this
implies that we can only remove this many such bonds,

1<b<p21. ~2.5!

We denote the resultant graph as (Kp3Gn) rb , where the
subscript signifies the above removal (r ) of b bonds. In or-
der for this to be nontrivial, i.e., forb>1, we thus require
that
.,

p>2. ~2.6!

The conditions~2.6! and ~2.5! will be assumed henceforth
Using Eq.~2.4! andr applications of the addition-contractio
theorem@15#, we obtain the important result

P„~Kp3Gn!rb ,q…5P~Kp3Gn ,q!1bP~Kp213Gn ,q!

5F )
s50

p22

~q2s!G $@q2~p21!#

3P~Gn ,q2p!1bP„Gn ,q2~p21!…%.

~2.7!

This is our general formula for the chromatic polynomial
(Kp3Gn) rb , for an arbitraryn-vertex graphGn . Substitut-
ing the expression~2.2!, we obtain
P„~Kp3Gn!rb ,q…5F )
s50

p22

~q2s!GF ~q2p11!~q2p!~q2p21!H c0~q2p!1(
j 51

Na

cj~q2p!aj~q2p!nJ
1b~q2p11!~q2p!H c0~q2p11!1(

j 51

Na

cj~q2p11!aj~q2p11!nJ G . ~2.8!
os-

e

ing
B. Boundary B for ˆ„Kp3G… rb‰

We denote then→` limit of the families Kp3Gn and
(Kp3Gn) rb as

lim
n→`

Kp3Gn5$Kp3G% ~2.9!

and

lim
n→`

~Kp3Gn!rb5$~Kp3G!rb%, ~2.10!

respectively. As discussed in Ref.@13#, the boundaryB for
W($G%,q) is the locus of points in theq plane where there is
a switching between different leading termsal in Eq. ~2.2!.
Since$G% was assumed not to haveB extending to infinity in
the q plane, it follows that for large enoughuqu, there is a
single leading termual (q)u in Eq. ~2.2!. Hence from Eq.
~2.8!, we see that at sufficiently largeuqu, the boundaryB for
the limiting functionW($Kp3G) rb%,q) is determined by the
equality

ual ~q2p!u5ual ~q2p11!u. ~2.11!

Note that this is independent ofb, so that

B is independent ofb for $~Kp3G!rb% ~2.12!
@given that the basic condition~2.5! is satisfied#. Let
q5q

R
1 iq

I
. One can next enumerate the various cases p

sible foral (q). The basic theorem that the coefficient of th
highest-order term, qn, in the chromatic polynomial
P(Gn ,q) of anyn-vertex graphGn is unity implies that if a
dominant termal (q) is a polynomial of degreesmax,

al ~q!5(
s50

smax

asq
s ~2.13!

then

asmax
51. ~2.14!

Consider, for example, the case whereal (q) is a linear func-
tion of q: al (q)5a1q1a0, which reduces to
al (q)5q1a0 by Eq. ~2.14!. Then Eq.~2.11! yields

q
R
5p2~ 1

2 1a0! for smax51 ~2.15!

with q
I

undetermined, i.e., a vertical line segment extend

to 6 i`1p2( 1
2 1a0) in the complexq plane. This type of

behavior is exemplified by graphs involvingKp adjoined to
trees or chains of triangles, in which one bond in theKp
subgraph is removed. We shall discuss these below.
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3938 56ROBERT SHROCK AND SHAN-HO TSAI
If al (q) is a quadratic function ofq, al (q)5q21a1q
1a0, then Eq.~2.11! yields an equation that has, as its on
acceptable solution,

q
R
5p2 1

2 ~11a1! as uqI u→` for smax52.
~2.16!

Hence, the boundaryB in this case is, for sufficiently large
uqI u, again a vertical line in the complexq plane located at
the value ofq

R
given by Eq.~2.16! and extending to6 i`.

This type of behavior is exemplified in our discussion bel
of graphs involvingKp adjoined to chains of squares~i.e.,
ladder graphs! with various boundary conditions, in whichr
bonds are removed from theKp subgraph in the manne
discussed above. In general, as we shall show, if one adj
Kp to an open chain ofk-gons arranged such that two adj
cent k-gons intersect along one of their mutual edges, th
the resultant chromatic polynomial has the form~2.8! with
smax5k22 andc0(q)50 ~there should be no confusion i
the notation ofk for the k-gons andK for Kp).

This, then, is the algorithm for producing families
graphs depending on three parameters,p, b, andn, with the
property that the limiting functionWr is nonanalytic at
1/q50. We have proved this by calculating first the chr
matic polynomials for finite graphs and then their respect
limiting functionsW. The key ingredients in the constructio
are, first, the adjoining of the complete graphKp to Gn , and
second, the removal ofb of the bonds connecting one verte
in Kp to other vertices ofKp . Together, these guarantee, v
Eq. ~2.7!, that the equation for the degeneracy of the lead
term al is of the form ~2.11!, and the locus of points tha
solve this degeneracy equation extends to complex infinit
the q plane, as we have shown.

We next give some illustrations of the application of th
algorithm.

III. FAMILIES OF GRAPHS WITH Wr NONANALYTIC
AT 1/q50

A. „Kp3Tn… rb

Perhaps the simplest illustration is for the familyKp3Tn
formed by adjoining a succession ofp vertices to each of the
n vertices of a tree graphTn and to each other. Removingb
bonds connecting a vertex ofKp to other vertices ofKp in
the manner described above yields the graph (Kp3Tn) rb .
From Eq.~2.7!, we calculate

P„~Kp3Tn!rb ,q…5F )
s50

p

~q2s!G @~q2p21!n21

1b~q2p!n22#. ~3.1!

Our general analysis in Eqs.~2.11!–~2.15! applies with
smax51, a0521, andc0(q)50 so that, from the genera
formula ~2.15! we have

q
R
5p1 1

2 for G5~Kp3T!rb . ~3.2!
ns

n

-
e

g

in

Hence, the boundaryB consists of the vertical line~3.2! with
2 i`<q

I
< i`. The diagram describing the regions of ana

ticity of the limiting functionW„$(Kp3T) rb%,q… consists of
two regions,

R1 :Re~q!.p1 1
2 ~3.3!

and

R2 :Re~q!,p1 1
2 . ~3.4!

Mapped to the 1/q plane ~a conformal transformation!, the
image of the vertical line is a closed curve, which crosses
real axis at the inverse ofq

R
in Eq. ~3.2! and at the origin. In

the 1/q plane, the image of regionR1 is a compact region
enclosed by this closed curve, while its complement is
image of the regionR2. We find that

W„$~Kp3T!rb%,q…5q2p for qPR1 , ~3.5!

i.e., Wr„$(Kp3T) rb%,q…512p/q. For qPR2, if q is real,
P„(Kp3Tn) rb ,q… alternates in sign asn increases through
even and odd integers, so, strictly speaking, the limit
n→` does not exist. Of course, there is also a correspond
variation in phases in this limit for the case of complexq
PR2. As we have discussed before, in such a situation
least the magnitude does have a well-defined limit:

uW„$~Kp3T!rb%,q…u5uq2p21u for qPR2 ~3.6!

or equivalentlyuWr„$(Kp3T) rb%,q…u5u12(p11)/qu. This
simple example thus explicitly illustrates the nonanalytic
at 1/q50; even aside from the choice of the phase in reg
R2, the two expressions above for the magnitude of the
ducedWr functions are different. The nonanalyticity in th
Wr function thus involves@for any choice of phases in Eq
~1.3! in R2# a discontinuity in the first derivativedWr /dz,
wherez51/q at z50.

Although these are all exact results for then→` limit, it
is of some interest to see how these boundaries develo
studying chromatic zeros for finiten. Here, we recall the
definition that the ‘‘chromatic zeros’’ of a graphG are the
zeros of the chromatic polynomialP(G,q) for this graph.
We carried out these types of studies for a number of fa
lies of graphs in Refs.@13# and@16#. A general question tha
we investigated was the following: excluding a we
understood subset of chromatic zeros at certain discrete
integer values, and considering the remainder, how close
these remaining zeros, for finiten, to the boundaryB that
obtains in then→` limit? From our study of the bipyramid
graph, in Ref.@13# ~see also Ref.@14#!, it was found that the
chromatic zeros near to the real axis in theq plane ~aside
from the discrete zeros atq50 and 1 and a zero very near t
q5Be552.618, . . . ) lie on ornear to the arcs forming the
boundary curvesB(R1 ,R3) and B(R2 ,R3) @defined in
greater generality in Eqs.~3.11!, ~3.12! below#, but the outer
zeros do not lie very close to the line segments ofB(R1 ,R2),
given by thep52 special case of Eq.~3.13! below, and only
approach these line segments slowly asn increases. We in-
ferred that this latter behavior was connected with the f
that this component of the boundary extends to complex
finity in the q plane and observed that this type of deviati
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did not occur for families of graphs whose boundariesB
were compact and did not extend to complex infinity.

Here we have carried out an analogous study of the chr
matic zeros of (Kp3Tn) rb and we find similar behavior as a
function of n. Since an interesting feature here is the depe
dence of the locations of chromatic zeros onb, we focus on
this. In Fig. 1 we show the results forp54 andn518 for
b51,2, and 3, the full range allowed by Eq.~2.5!. The out-
ermost zero and its complex conjugate do not lie very near
the vertical line withq

R
59/2 given by thep54 special case

of Eq. ~3.2!. As b increases from 1 to 3, this outermost zero
moves to largeruqI u and slightly smallerq

R
, and hence

slowly toward the above-mentioned vertical line. From Eq
~3.1!, it follows that for p54, there are also discrete chro-
matic zeros atq50, 1, 2, 3, and 4, and these are evident i
Fig. 1.

B. „Kp3Cn… rb

A second illustration is provided by the family of graphs
(Kp3Cn) rb obtained by starting with thep-wheel Kp3Cn
with p>2, whereCn is the n-vertex circuit graph, and re-
moving b bonds connecting a vertex inKp to other vertices
in Kp . From the general formula Eq.~2.7! we calculate

P„~Kp3Cn!rb ,q)5F )
s50

p22

~q2s!G @~q2p11!~q2p21!

3$~q2p21!n211~21!n%

1b~q2p!$~q2p!n211~21!n%#.

~3.7!

Our general analysis in Eqs.~2.11!–~2.15! applies with
smax51 anda0521 so that again, for sufficiently largeuqu,
B contains the vertical lines extending to6 i` with
q

R
5p11/2, as was the case withW„$(Kp3T) rb%,q…. How-

FIG. 1. Chromatic zeros of (Kp3Tn) rb for p54, n518, and
b51 (•), 2 (1), and 3 (3), where the symbols for the points are
given in parentheses. In then→` limit, our exact results give the
continuous region boundaryB as thep54 special case of Eq.~3.2!,
i.e., the vertical line with Re(q)59/2 and Im(q) arbitrary, indepen-
dent ofb by Eq. ~2.12!.
o-

-

to

.

ever, because thec0(q) terms are nonzero in this case, th
region boundaries in the vicinity of the real axis differ fro
the simple vertical line found forW„$(Kp3T) rb%,q…. By
methods similar to those that we used in Ref.@13# ~i.e.,
working out the conditions for the degeneracy of the lead
terms in P), we find that the region diagram fo
W„$(Kp3C) rb%,q… consists of three regions:

R1 : Re~q!.p1 1
2 and uq2pu.1, ~3.8!

R2 : Re~q!,p1 1
2 and uq2~p11!u.1, ~3.9!

and

R3 : uq2pu,1 and uq2~p11!u,1. ~3.10!

The boundaries between these regions are thus the two
cular arcs

B~R1 ,R3!:q5p1eiu, 2
p

3
,u,

p

3
~3.11!

and

B~R2 ,R3!:q5p111eif,
2p

3
,f,

4p

3
~3.12!

together with the semi-infinite vertical line segments

B~R1 ,R2!5$q%:Re~q!5p1 1
2 and uIm~q!u.

A3

2
.

~3.13!

These meet at the intersection points

qint.5p1
1

2
6 i

A3

2
. ~3.14!

The arcsB(R1 ,R3) and B(R2 ,R3) cross the real axis a
q5p11 and q5p, respectively. The region diagram fo
W($(Kp3C) rb%,q) is shown in Fig. 2.

FIG. 2. Diagram showing regional boundaries comprisingB for
W„$(Kp3C) rb%,q…. Breaks in the horizontal axis indicate thatp is
an arbitrary integer>2.
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3940 56ROBERT SHROCK AND SHAN-HO TSAI
Mapped to the 1/q plane, the image of the vertical line i
a curve in the right-hand half-plane, which passes vertica
through the origin, enclosing the image ofR1. The enclosed
regionR3 remains enclosed, while the left-hand regionR2 in
the q plane maps to the region exterior to the images ofR1
and R3 in the 1/q plane. The casep52 is the bipyramid
family of graphs@13,14#. We find that

W„$~Kp3C!rb%,q…5q2p for qPR1 . ~3.15!

For the other regions, we have, in general,

uW„$~Kp3C!rb%,q…u5H uq2~p11!u for qPR2

1 for qPR3 .
~3.16!

TheWr functions in regionsR1 andR2 are the same as thos
in the corresponding regions for the previous fami
$(Kp3T) rb%, while regionR3 has no analog for that family
As before, the nonanalyticity inWr is most conveniently
discussed in the 1/q plane. There are two regions contiguo
across the image ofB at the origin, 1/q50, namely, the
images under inversion of regionsR1 andR2. The nature of
the nonanalyticity inWr at 1/q50 is the same as that in th
$(Kp3T) rb% family.

Again, it is of interest to calculate the chromatic zeros
some finite graphs in these families and see how close t
lie to the locus of zeros in then→` limit. We have carried
out such a study. As an illustration, in Fig. 3, we show t
chromatic zeros for (Kp3Cn) rb with p54, andn518 for
b51, 2, and 3. This may be compared with thep54 special
case of the plot of the region diagram in Fig. 2@which is the
same for allb, by the result~2.12!#. Note that the discrete
chromatic zeros atq50, 1, 2, and 3 are not part of th
continuous locus of zeros formingB in the n→` limit. For
comparison, the previously mentioned bipyramid graph
the casep52, for which only the single valueb51 is al-
lowed. We find that the complex chromatic zeros near
real axis lie on or close to the arcsB(R1 ,R3) andB(R2 ,R3),
but the outer zeros do not lie very close to the line segme

FIG. 3. Chromatic zeros of (Kp3Cn) rb for p54, n518, and
b51 (•), 2 (1), and 3 (3). In the n→` limit, our exact results
give the continuous region boundaryB as thep54 special case of
Fig. 2.
ly

,

r
ey

s

e

ts

of B(R1 ,R2) given by the p54 special case of~3.13!,
namely, q

R
59/2, uqI u>A3/2 and only approach these lin

segments slowly asn increases. Evidently, the behavior o
the chromatic zeros as functions ofb is qualitatively similar
to that which we observed in Fig. 1. We have carried o
analogous studies of the chromatic zeros for other familie
graphs constructed via our algorithm to have region bou
ariesB extending to complex infinity and have found simil
results.

C. †Kp3„Ch…k,n‡ rb

We define an open chain ofm k-gons constructed suc
that a givenk-gon intersects with the nextk-gon in the chain
along one of their mutual edges as (Ch)k,n where the number
of vertices is

n5~k22!m12. ~3.17!

The chromatic polynomial for the open chain ofm k-gons is

P„~Ch!k,n ,q…5q~q21!Dk~q!m, ~3.18!

where

Dk~q!5 (
s50

k22

~21!sS k21

s D qk222s. ~3.19!

Next, consider the graphKp3(Ch)k,n obtained by adjoining
Kp to the chain ofm k-gons, (Ch)k,n , wheren is again given
by Eq. ~3.17!. From Eq.~2.4!, we have

P„Kp3~Ch!k,n ,q…5F )
s50

p11

~q2s!GDk~q2p!m.

~3.20!

The chromatic polynomialP(@Kp3(Ch)k,n# rb ,q) is then ob-
tained by substitution of Eq.~3.20! into Eq. ~2.7!. Note that

Dk~q!5al ~q! ~3.21!

in Eqs.~2.8!, ~2.11!, and~2.13! general class of graphs. From
the above substitution, we find that the resultant chrom
polynomial is of the form~2.8! with

c0~q!50, smax5k22 for @Kp3~Ch!k,n# rb .
~3.22!

For sufficiently large uqI u, the region boundaryB for
W„$@Kp3(Ch)k# rb%,q… consists of complex-conjugate vert
cal line segments extending to6 i` with Re(q)5q

R
equal

to

q
R
5p1

k

2~k22!
for $@Kp3~Ch!k# rb% with k>3

~3.23!

where the notation convention of Eq.~2.10! is used. Note
that if one considers chains ofk-gons withk progressively
larger and larger, this approaches the lim
limk→`q

R
5p11/2. As defined in the Introduction, the re

gion to the right of this boundary isR1, and we denote the
region to the left asR2. In general~in particular, fork>5)
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there will be other regions within whichW„$@Kp

3(Ch)k# rb%,q… is analytic but we only needR1 and R2 for
our discussion of the nonanalyticity at 1/q50 since it is only
the images under inversion of these two regions that bo
the origin of the 1/q plane. For the resultant limiting func
tions W we calculate
er

W„$@Kp3~Ch!k# rb%,q…5Dk~q2p11!1/~k22! for qPR1 ,
~3.24!

uW„$@Kp3~Ch!k# rb%,q…u5uDk~q2p!u1/~k22! for qPR2 .
~3.25!

Hence
t
na-
in
erivative

r

Wr„$@Kp3~Ch!k# rb%,q…5S 12
p21

q D F (
s50

k22

~21!sS k21

s D ~q2p11!2sG1/~k22!

for qPR1 , ~3.26!

uWr„$@Kp3~Ch!k# rb%,q…u5US 12
p

qD F (
s50

k22

~21!sS k21

s D ~q2p!2sGU1/~k22!

for qPR2 . ~3.27!

For k>4, these have the expansions near 1/q50

Wr„$@Kp3~Ch!k# rb%,q…512S p211
k21

k22Dq211O~q22! as 1/q→0 with qPR1 ~3.28!

~e.g., 1/q→01 through real values! and

uWr„$@Kp3~Ch!k# rb%,q…u5U12S p1
k21

k22Dq211O~q22!U as 1/q→0 with qPR2 . ~3.29!

These expressions also apply for the casek53 but terminate with theO(q21) term, sinceD3(q) is linear and the exponen
1/(k22) in Eqs.~3.24! and ~3.25! is just unity. Thus, for allk>3, these results indicate explicitly the nature of the nona
lyticity of the reduced functionWr„$@Kp3(Ch)k# rb%,q… at 1/q50. As in our earlier examples, this nonanalyticity involves,
general, the sudden onset of a complex phase and apart from this, even for the magnitude, a discontinuity in the first d
dWr /dz at z51/q50.

Since the lowest two cases,k53,4 exhibit particularly simple boundariesB, we give a few explicit results for them. Fo
k53 we find

P„@Kp3~Ch!3,n# rb ,q…5F )
s50

p

~q2s!G @~q2p21!~q2p22!m1b~q2p21!m#, ~3.30!
n

e

where from Eq.~3.17!, m5n22. This has the form of our
general Eq.~2.8! with linear al (q), a0522, andc0(q)50
so that in then→` limit, by Eq. ~2.15!, it follows that the
boundaryB consists of the vertical line

q
R
5p1 3

2 for $@Kp3~Ch!3# rb%. ~3.31!

The general formulas~3.26! and ~3.27! reduce to the simple
expressions

Wr„$@Kp3~Ch!3# rb%,q…512
p11

q
for qPR1

~3.32!

and

uWr„$@Kp3~Ch!3# rb%,q…u5U12
p12

q U for qPR2 .

~3.33!
For the k54 case,D4(q)5al (q)5q223q13, so that
Eq. ~3.23! or the quadratic special case Eq.~2.16! with
a1523 andc0(q)50 applies and yields

q
R
5p11 for W„$@Kp3~Ch!4# rb%,q…. ~3.34!

Using Eqs.~3.20! and ~2.7!, we determine that the regio
boundary ofW„$@Kp3(Ch)4# rb%,q… is again precisely the
vertical line with q

R
given by Eq.~3.34! and uqI u arbitrary.

Note that this holds even thoughD4(q)5al (q) is quadratic.
However, the generic behavior for higherk is that in the
vicinity of the real axis,B is more complicated, and th
complex-conjugate vertical line segments withq

R
given by

Eq. ~3.23! apply for uqI u.kk , where kk is a k-dependent
constant.

From Eqs.~3.26! and ~3.27! we have

Wr„$@Kp3~Ch!4# rb%,q…

5@12~2p11!q211~p21p11!q22#1/2 for qPR1
~3.35!

and
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uWr„$@Kp3~Ch!4# rb%,q…u

5u@12~2p13!q211~p213p13!q22#u1/2 for qPR2 .
~3.36!

D. „Kp3L n,bc… rb

A slightly more complicated illustration is provided b
starting with ann-vertex ladder graph, i.e., chain of square
as in thek54 case discussed above, but with periodic
twisted boundary conditions~rather than open boundary con
ditions! denotedLn,pbc andLn,tbc, respectively. Note that an
even number of twists is equivalent to no twist and any o
number of twists is equivalent to one twist. Following o
general algorithm in~2.7!, we adjoinKp to this ladder graph
and then removeb of the bonds connecting a vertex in th
Kp graph to other vertices inKp . Using the basic results

P~Ln,pbc,q!5~q223q13!n/21~q21!

3$~32q!n/21~12q!n/2%1q223q11

~3.37!

and

P~Ln,tbc,q!5~q223q13!n/21~q21!

3$~32q!n/22~12q!n/2%21 ~3.38!

we can apply our general analysis above. First, we note
because the terms raised to thenth power, which can be
leading terms as discussed in conjunction with Eq.~2.2!, are
the same forP(Ln,pbc,q) andP(Ln,tbc,q), it follows that

W„$~Kp3Lpbc!rb%,q…5W„$~Kp3L tbc!rb%,q… ~3.39!

and hence the boundariesB are identical for these two func
tions. In both cases, from our general results, it follows t
B contains complex-conjugate vertical line segments that
tend to6 i` with

q
R
5p11 ~3.40!

as for the case of free boundary conditions, Eq.~3.34!. These
line segments extend outward toqI56` from the intersec-
tion points

qint ,qint* 5p116 iA3. ~3.41!

At these intersection points, the boundary bifurcates i
two, which extend down and cross the real axis at

q
R,cross

5p,p1A2. ~3.42!

In Fig. 4 we show a plot of the region diagram fo
W„$(Kp3Lpbc) rb%,q…5W„$(Kp3L tbc) rb%,q…; again, by Eq.
~2.12!, it is independent ofb.

IV. A GENERAL CONDITION GOVERNING THE
„NON…ANALYTICITY OF Wr„ˆG‰,q… AT 1/q50

As we stated at the end of Sec. II, the key ingredient
our algorithm to construct families of graphs$G% with the
property thatB extends to complex infinity in theq plane
,
r

d

at

t
x-

o

n

and hence thatWr($G%,q) is nonanalytic at 1/q50 is to
produce a chromatic polynomial with the feature that the
are two leading terms with a degeneracy condition~2.11!.
From Eq. ~2.7!, these leading terms are actually the sam
function, just evaluated at arguments that differ by unity,
is evident in Eq.~2.11!. Here we generalize from this study
to state the following theorem:

Theorem. Consider a family ofn-vertex graphs and its
n→` limit $H%. With P(Hn ,q) in the form of Eq.~2.2!, the
region boundaryB of the resultant asymptotic limiting func-
tion W($H%,q) extends to complex infinity in theq plane,
and henceWr($H%,q) is nonanalytic at 1/q50 in the 1/q
plane, if and only if the locus of solutions of the degenera
condition of leading terms

ual ~q!u5ual8 ~q!u ~4.1!

extends to complex infinity.
Of course, this locus of points obeys the condition~2.1!.

Our algorithm yields the family of graphs (Kp3Gn) rb , de-
pending onp andb, whosen→` limit, $(Kp3G) rb% satis-
fies the above condition.

A general feature of our results is that for the families o
graphs we have constructed and studied, for whichB extends
to complex infinity in theq plane, the image, under inver-
sion, ofB passes through the origin of the 1/q plane with an
infinite tangent, i.e., vertically. This reflects the property th
the portion ofB that extends to complex infinity is comprised
of a vertical line segment and its complex conjugate, with
fixed value ofRe(q).

One salient feature of our study is clearly that none of o
families of graphs withWr($G%,q) nonanalytic at 1/q50 is
a regular lattice graph. Our results are therefore consist
with the assumption underlying the original series calcul
tions, that a sufficient condition forWr($G%,q) to be analytic
at 1/q50 is that$G% be a regular lattice graphL. We state
this formally as the following conjecture:

Conjecture: Let $G% denote the infinite-n limit of a family
of graphsGn . A sufficient condition for the resultant re-

FIG. 4. Diagram showing regional boundaries comprisingB for
W„$(Kp3Lxbc) rb%,q… where xbc denotes periodic or twisted bound
ary conditions~pbc, tbc!. Breaks in the horizontal axis indicate tha
p is an arbitrary integer>2.
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duced functionsWr($G%,q) to be analytic at 1/q50 is that
$G% is a regular lattice graph$G%5L.

It is clear from Ref.@13# that the property that$G% be a
regular lattice is not a necessary condition for the associ
Wr($G%,q) to be analytic at 1/q50; in that work we calcu-
lated W($G%,q) functions for a number of families$G%
which are not regular lattice graphs, but for which the cor
spondingWr($G%,q) functions are analytic at 1/q50.

For a regular latticeL with coordination numberz, a
natural reduced function is defined by

W~$G%,q!5q~12q21!z/2W̄~L,y! ~4.2!

for which the large-q Taylor series expansion is@10–12#

W̄~L,y!511 (
n51

`

wL,nyn, y5
1

q21
. ~4.3!

Clearly,W̄(L,y) is analytic aty50 if and only if Wr(L,q)
is analytic at 1/q50. In Refs.@13,17,18# we have made de
tailed comparisons of existing large-q series expansions with
high-precision Monte Carlo measurements ofW(L,q) as
well as rigorous lower bounds that we have derived@19# and
have found excellent agreement forq>4 on a number of
different lattices, including both homopolygonal~e.g., square
and honeycomb! lattices and heteropolygonal Archimede
lattices ~composed of regular polygons of more than o
type, such that all vertices are equivalent!, viz., the 4•82

lattice, for which we have calculated a large-q series!. This
excellent agreement provides motivation to include latti
d

ed

-

s

involving packings with different regular polytopes under t
term ‘‘regular lattice’’ in the above conjecture~here, poly-
tope is the general mathematical object that subsumes
polygon in two dimensions and polyhedron in three dime
sions@20#!.

V. CONCLUSIONS

In this paper we have addressed a fundamental proble
graph theory with important implications for statistical m
chanics, namely, the question of the analyticity
Wr($G%,q) at 1/q50. In order to understand the phenom
enon of nonanalyticity of this function at 1/q50 better, we
have constructed a general algorithm for producing infinit
many families of graphs, each depending on two parame
p and b, with Wr functions that are nonanalytic at 1/q50.
We have studied the properties of several of these famil
We have also stated a general necessary and sufficient
dition on the chromatic polynomial of a family of graph
such that the resultantWr($G%,q) is nonanalytic at 1/q50.
This condition explains the source of the nonanalyticity
the cases where it occurs. The results of our study are c
sistent with the conjecture that a sufficient condition~we
know that this is not a necessary condition! for Wr($G%,q) to
be analytic at 1/q50 is that $G%5L is a regular lattice
graph.
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